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8-Azabicyclo[3.2.1]oct-3-en-2-ones via asymmetric 1,3-dipolar
cycloaddition of a homochiral 3-oxidopyridinium betaine
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Abstract—8-Azabicyclo[3.2.1]oct-3-en-2-ones were prepared by asymmetric 1,3-dipolar cycloadditions of homochiral pyridinium
betaine 4. Excellent diastereofacial selectivity was achieved for the major 6-exo cycloadducts. The absolute stereochemistry of cyclo-
adduct 7 was confirmed by a single-crystal X-ray diffraction study.
� 2006 Elsevier Ltd. All rights reserved.
We required access to homochiral 8-azabicyclo[3.2.1]-
oct-3-en-2-ones, as exemplified by structure 1 or its anti-
pode, to provide intermediates for a program of
chemical synthesis.
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The construction of such bicyclic compounds in racemic
form utilised efficient 1,3-dipolar cycloaddition of
1-benzyl-2-phenyl-3-oxidopyridinium betaine and a
dipolarophile bearing an electron-withdrawing group.1,2

It was envisaged that an asymmetric synthesis could be
accomplished by introducing a chiral controlling
element to the dipolar cycloaddition.3 Two intermole-
cular approaches for asymmetric synthesis were
contemplated, either with a chiral auxilliary on the
dipolarophile (Scheme 1, Eq. 1), or on the nitrogen of
the betaine (Scheme 1, Eq. 2). Indeed, the feasibility of
the former methodology has been demonstrated using
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(R)-p-tolyl vinyl sulfoxide 24,5 or an acrylate derived
from (S)-methyl lactate 36 as the dipolarophile.
However, the latter novel approach (Scheme 1, Eq. 2)
was attractive to explore due to the versatility offered
by potential combination of a homochiral betaine with
a variety of dipolarophiles.

An a-methylbenzyl substituent on the pyridinium bet-
aine was chosen as the auxilliary to investigate since this
would give a chiral controlling element close to the
reacting centres and would be easily removed. Thus,
synthesis of homochiral betaine 4 was performed in
three steps as outlined in Scheme 2. The key transforma-
tions were reductive amination of the hindered ketone 5,
using imine formation with (S)-a-methylbenzylamine
mediated by titanium(IV) isopropoxide followed by
sodium borohydride reduction,7 and oxidation of the
resultant furyl amine 6 (ca. 2:1 mixture of diastereoiso-
mers) with bromine in aqueous tetrahydrofuran.8

Dipolar cycloaddition of homochiral betaine 4 with
excess tert-butyl acrylate was performed in toluene at
95 �C for 4 days to give a 70% overall yield of cyclo-
adducts with complete regioselectivity (Scheme 3). The
major 6-exo isomer 7 was formed with excellent diaste-
reofacial selectivity (7:8 96:4). As in the achiral cyclo-
addition of 1-benzyl-2-phenyl-3-oxidopyridinium
betaine with tert-butyl acrylate,2 a significant quantity
of 6-endo product were also formed (exo:endo ratio
1.8:1). Interestingly however, the 6-endo diastereoselec-
tivity was only moderate (9:10 67:33). The absolute
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Scheme 1. Potential approaches to asymmetric 1,3-dipolar cycloaddition, either with a chiral auxilliary on the dipolarophile (Eq. 1), or on the
nitrogen of the betaine (Eq. 2).
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Scheme 2. Reagents and conditions: (i) NaBPh4, Pd(OAc)2, Na2CO3, acetone, rt (58%); (ii) (S)-(�)-a-methylbenzylamine, Ti(O-i-Pr)4, 80 �C then
NaBH4, MeOH, rt (95%); (iii) Br2, THF/H2O, 0 �C to rt (52%).
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Scheme 3. Cycloaddition with tert-butyl acrylate.
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stereochemistry of cycloadduct 7 was established by a
single-crystal X-ray diffraction study, as shown in Fig-
ure 1.9 Structural assignment of cycloadducts 8–10 was
made on the basis of NMR studies.10,11
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Figure 1. Perspective view of cycloadduct 7 generated by ORTEP3
from the crystallographic coordinates. The ellipsoids for the nonhy-
drogen atoms are drawn at the 50% level while the H atoms are a fixed
size.

Figure 2. Rationalisation of cycloaddition face selectivity.
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Cycloaddition of betaine 4 with phenyl vinyl sulfone was
less efficient than previously observed with the corre-
sponding achiral N-benzyl betaine.2 Variation of solvent
and reaction temperature suggested that toluene at
90 �C for 4–5 days was the optimum conditions, giving
the major 6-exo isomer 11 with excellent diastereoselec-
tivity (>95:5) in 31% yield (48% based on recovered SM)
together with unreacted betaine 4 (34%) (Scheme 4).
Higher reaction temperatures failed to improve the yield
of cycloadduct 11, but instead gave significant amounts
of the O-a-methylbenzyl compound 12. The stereochemi-
stry of cycloadduct 11 was assigned on the basis of 1H
NMR analysis,12 supported by the X-ray structure of 7.

The observed stereocontrol was rationalised by prefer-
ential approach of the dipolarophile from the b-face of
betaine 4 anti to the phenyl moiety of the a-methylbenz-
yl substituent as illustrated in Figure 2.

The homochiral betaine 4 was efficiently prepared in
three steps from 2-furoyl chloride, using (S)-a-methyl-
benzylamine as the source of chirality. 1,3-Dipolar
cycloadditions proceeded in moderate to good yields,
with excellent diastereofacial selectivity achieved for
the major 6-exo cycloadducts. The absolute stereochem-
istry of cycloadduct 7, the major product from reaction
of 4 with tert-butyl acrylate (70% overall yield of
N

PhO2S

Ph
Ph

(31%

4 (1S,5R,6S,9S

SO2Ph

toluene, 90 ˚C, 5 d

(1.1 eq.)

N

Ph

O

Ph
+

_

Scheme 4. Cycloaddition with phenyl vinyl sulfone.
cycloadducts), was confirmed by a single-crystal X-ray
diffraction study. Asymmetric cycloadditions of homo-
chiral 1,3-dipoles, particularly nitrones and azomethine
ylides bearing a chiral substituent on nitrogen, are
well established.3 However, we believe that the work
described in this Letter represents the first application
of such methodology to cycloaddition of a homochiral
3-oxidopyridium betaine.
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H-5), 3.95 (1H, q, J 6.9 Hz, CHCH3), 2.94 (1H, dd, J 2.0,
14.4 Hz, H-7exo), 2.67 (1H, dd, J 1.9, 9.1 Hz, H-6), 2.42
(1H, dd, J 9.0, 14.4 Hz, H-7endo), 1.48 (9H, s, C(CH3)3),
0.85 (3H, d, J 6.9 Hz, CHCH3). Compound 8 (partial
data): d 6.18 (1H, d, J 9.8 Hz, H-3), 4.31 (1H, d, J 4.7 Hz,
H-5), 3.72 (1H, q, J 6.9 Hz, CHCH3), 3.26 (1H, dd, J 2.4,
14.5 Hz, H-7exo), 2.80 (1H, dd, J 2.4, 9.0 Hz, H-6), 2.22
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2.71 (1H, dd, J 10.2, 14.2 Hz, H-7exo), 2.37 (1H, dd, J 6.8,
14.3 Hz, H-7endo), 1.42 (9H, s, C(CH3)3), 1.27 (3H, d, J
6.9 Hz, CHCH3).

12. Compound 11: 1H NMR (400 MHz, CDCl3): d 8.15 (2H,
d, J 7.5 Hz), 7.82 (2H, m), 7.66 (1H, m), 7.52 (2H, m),
7.39–7.24 (8H, m), 6.61 (1H, dd, J 4.7, 9.7 Hz, H-4), 5.92
(1H, d, J 9.6 Hz, H-3), 4.28 (1H, d, J 4.7 Hz, H-5), 3.91
(1H, q, J 6.9 Hz, CHCH3), 3.35 (1H, dd, J 3.5, 9.4 Hz,
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